Optimal control for the infinity obstacle problem
نویسندگان
چکیده
In this note, we show that a natural optimal control problem for the ∞ \infty -obstacle admits an which is also state. Moreover, convergence of minimal value alttext="p"> p encoding="application/x-tex">p to our problem, as alttext="p right-arrow normal → encoding="application/x-tex">p\to \infty .
منابع مشابه
Adaptive Optimal Control of the Obstacle Problem
The article is concerned with the derivation of a posteriori error estimates for optimization problems subject to an obstacle problem. To circumvent the nondifferentiability inherent to this type of problem, we introduce a sequence of penalized but differentiable problem. We show differentiability of the central path and derive separate a posteriori dual weighted residual estimates for the erro...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOptimal control of a quasi-variational obstacle problem
We consider an optimal control where the state-control relation is given by a quasivariational inequality, namely a generalized obstacle problem. We give an existence result for solutions to such a problem. The main tool is a stability result, based on the Mosco-convergence theory, that gives the weak closeness of the control-to-state operator. We end the paper with some examples.
متن کاملTowards M-stationarity for Optimal Control of the Obstacle Problem with Control Constraints
We consider an optimal control problem, whose state is given as the solution of the obstacle problem. The controls are not assumed to be dense in H−1(Ω). Hence, local minimizers may not be strongly stationary. By a non-smooth regularization technique similar to the virtual control regularization, we prove a system of C-stationarity using only minimal regularity requirements. We show that even a...
متن کاملStrong Stationarity for Optimal Control of the Obstacle Problem with Control Constraints
We consider the distributed optimal control of the obstacle problem with control constraints. Since Mignot proved in 1976 the necessity of a system which is equivalent to strong stationarity, it has been an open problem whether such a system is still necessary in the presence of control constraints. Using moderate regularity of the optimal control and an assumption on the control bounds (which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2021
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/15455